On the Davenport Constant and Group Algebras
نویسنده
چکیده
For a finite abelian group G and a splitting field K of G, let d(G, K) denote the largest integer l ∈ N for which there is a sequence S = g1 · . . . · gl over G such that (X g1 − a1) · . . . · (Xl − al) 6= 0 ∈ K[G] for all a1, . . . , al ∈ K . If D(G) denotes the Davenport constant of G, then there is the straightforward inequality D(G)−1 ≤ d(G, K). Equality holds for a variety of groups, and a standing conjecture of W. Gao et.al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for which D(G)− 1 < d(G, K) holds. Thus we disprove the conjecture.
منابع مشابه
Barycentric-sum problems: a survey
Let G be a finite abelian group. A sequence in G is barycentric if it contains one element “average” of its terms. We give a survey of results and open problems concerning sufficient conditions for the existence of barycentric sequences. Moreover values and open problems on the k-barycentric Davenport constant BD(k, G), the barycentric Davenport constant BD(G), the strong k-barycentric Davenpor...
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملConstrained and generalized barycentric Davenport constants
Let G be a finite abelian group. The constrained barycentric Davenport constant BD(G) with s ≥ 2, is the smallest positive integer d such that every sequence with d terms in G contains a k-barycentric subsequence with 2 ≤ k ≤ s. The generalized barycentric Davenport constant BDs(G), s ≥ 1, is the least positive integer d such that in every sequence with d terms there exist s disjoint barycentri...
متن کاملA note on essentially left $phi$-contractible Banach algebras
In this note, we show that cite[Corollary 3.2]{sad} is not always true. In fact, we characterize essential left $phi$-contractibility of the group algebras in terms of compactness of its related locally compact group. Also, we show that for any compact commutative group $G$, $L^{2}(G)$ is always essentially left $phi$-contractible. We discuss the essential left $phi$-contractibility of some Fou...
متن کاملRemarks on the plus-minus weighted Davenport constant
For (G,+) a finite abelian group the plus-minus weighted Davenport constant, denoted D±(G), is the smallest l such that each sequence g1 . . . gl over G has a weighted zero-subsum with weights +1 and −1, i.e., there is a non-empty subset I ⊂ {1, . . . , l} such that ∑ i∈I aigi = 0 for ai ∈ {+1,−1}. We present new bounds for this constant, mainly lower bounds, and also obtain the exact value of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009